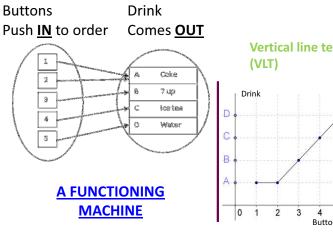
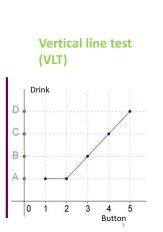

4.1 Relations Vs. Functions

Warm up:

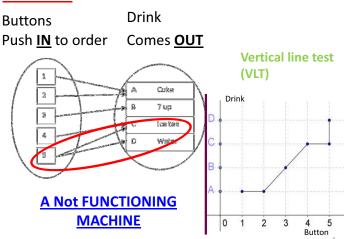
Function vs Relation

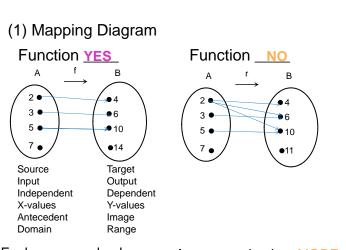
Definition:


Notation:


A *relation* is a rule which takes an input and may/or may not produce multiple outputs.

A function is a special relation where every input has at most one output.


Relation: y = 2x + 1Read it "f of x": the brackets here DO NOT MEAN MULTIPLY!! f(x) = 2x + 1Function: Ex 1: find f(7) = 2(7) + 1= 15find f(-5) = 2(-5) + 1= -9


Consider 2 machines. Machine A:

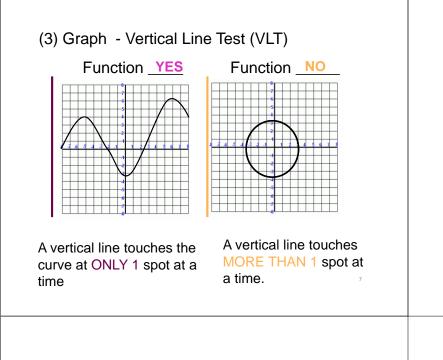
Machine B:

Each source value has only ONE target value

A source value has MORE THAN ONE target value 5

(2) Table of Values

Function		YES
x	у	
0	3	
1	4	
3	6	
5	8	


Function NO

x	У
1	0
2	_1
4	3
4	5 /

Each x value has only ONE y value.

4	5	
	_	
		 1 10

An x value has MORE THAN ONE y value

- Ex 2: Evaluate the following functions
- a) f(x) = 3x + 5 find f(3)

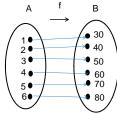
b) $g(x) = x^2 + 1$ find g(6)

c) h(x) = (x-2)(x-5) find h(6)

Practice: Pages 94,95 # 2-6

4.2 – A- Modes of Representation of a function

In a relation between 2 variables x and y, one usually depends on the other (the output depends on the input).


We say: y depends on x

- therefore y is the dependent variable,
- and x is the independent variable.

Do activities 1,2,3 on pages 96, 97

P.96 Act.2: Anna works as a dental hygienist in a clinic. Her hourly wage is \$22. In this situation consider the following two variables: the number of hours worked in a week and her salary.

P. 96 Act. 1: A ferry ensures the transportation from a town to an island. The rates are the following: \$20 per car and \$10 per occupant in the car. No car is accepted without an occupant and there is a maximum of 6 occupants per car.

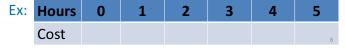
P. 97 Act 3: A water reservoir contains 1000 liters of water. A pump is activated to empty the reservoir at a rate of 50 liters per minute. Consider the function which associates the variable "elapsed time" with the variable "quantity of water left in the reservoir".

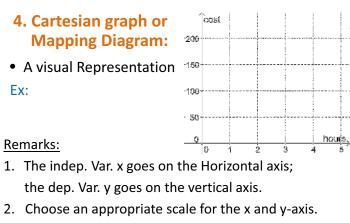
4.2-B- Modes of Representation of a function

There are different ways of representing a function:

1. Verbal/Written:

- That is a sentence/paragraph to describe the function in words.
- Ex: A repairman charges \$30 per hour plus \$60 for his travel expenses.

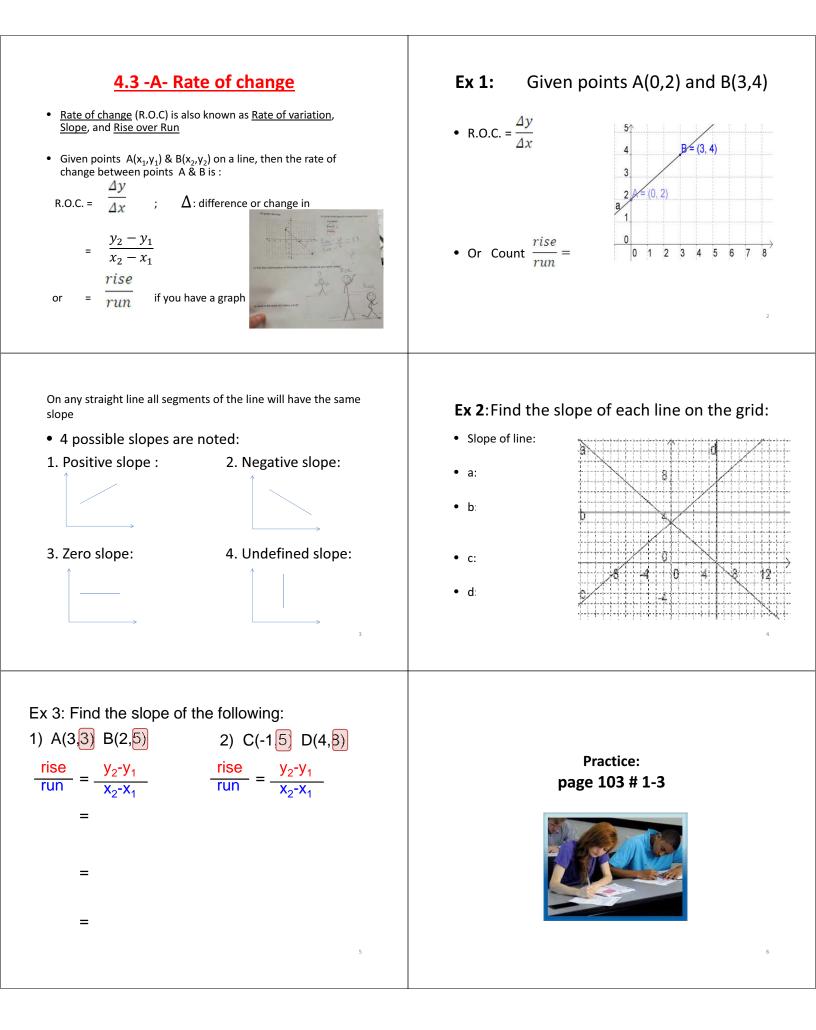

2. Rule/Equation:


• That translates from English to Math, and expresses the dependent variable y in terms of the independent variable x.

Ex:

3. Table of Values:

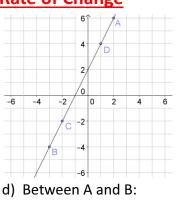
• A way to organize data. It associates the x values with their y values.



3. We can break the axis if the graph starts up too high.

4. Remember to label the axis, the scales, and put a title.

Practice: Page 98 # 1



Find the rate of changes: a) Between A and D:

- b) Between D and C:
- c) Between C and A:

Property of ROC of a straight line:

- On a straight line the ROC is constant (the same) no matter which 2 points we pick.
 - Where as on a curve the ROC changes (is not constant) along the curve.
- On a graph we can count the units:

$$\blacktriangleright$$
 ROC = $\frac{rise}{run}$

• Given 2 points A(x₁,y₁) and B(x₂,y₂):

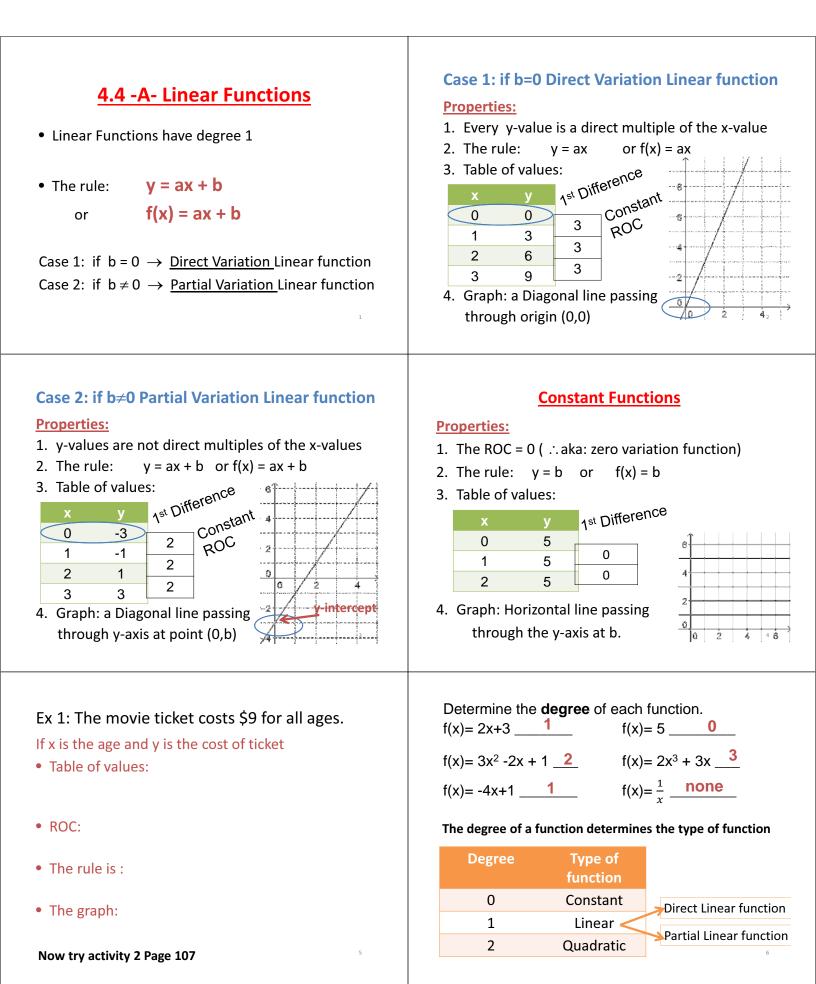
▶ ROC = $\frac{y_2 - y_1}{x_2 - x_1}$

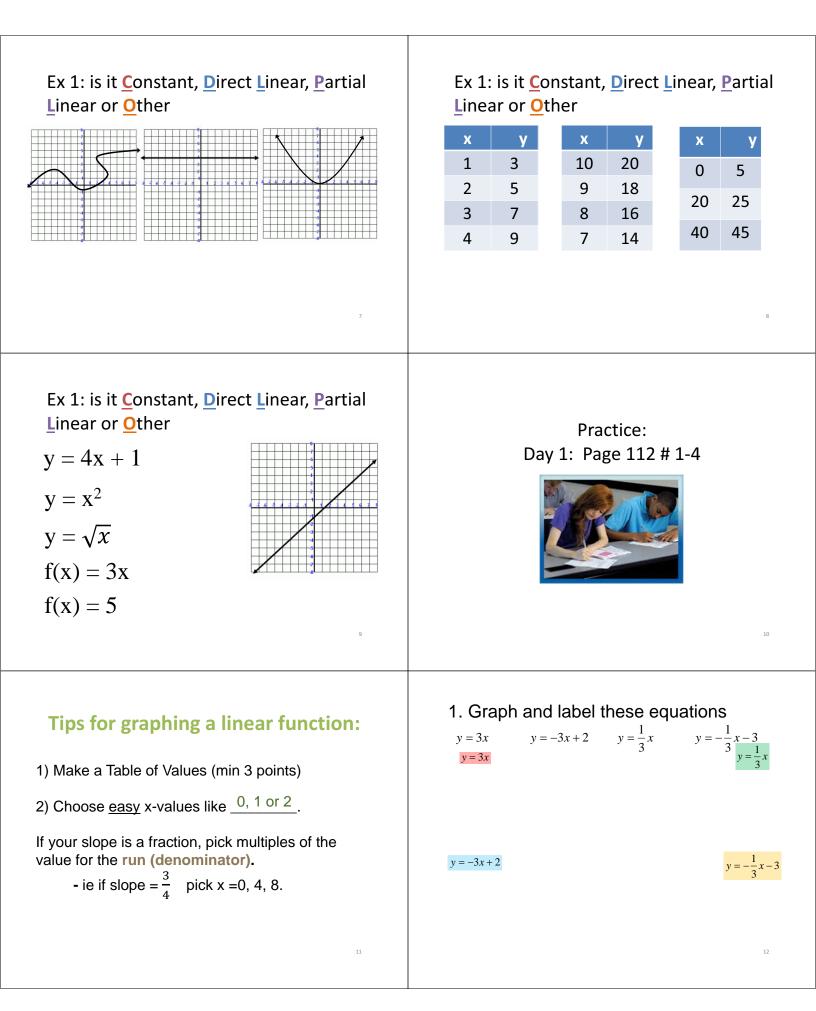
Find the rate of Change for the Following

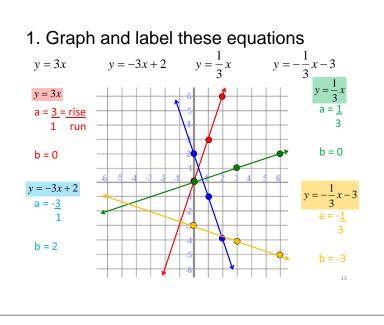
Ex 1: A tank initially contains 56 000 L of eggnog. The tank is leaking! After 5 hrs the tank has 45 000 L.

Find the rate of Change for the Following

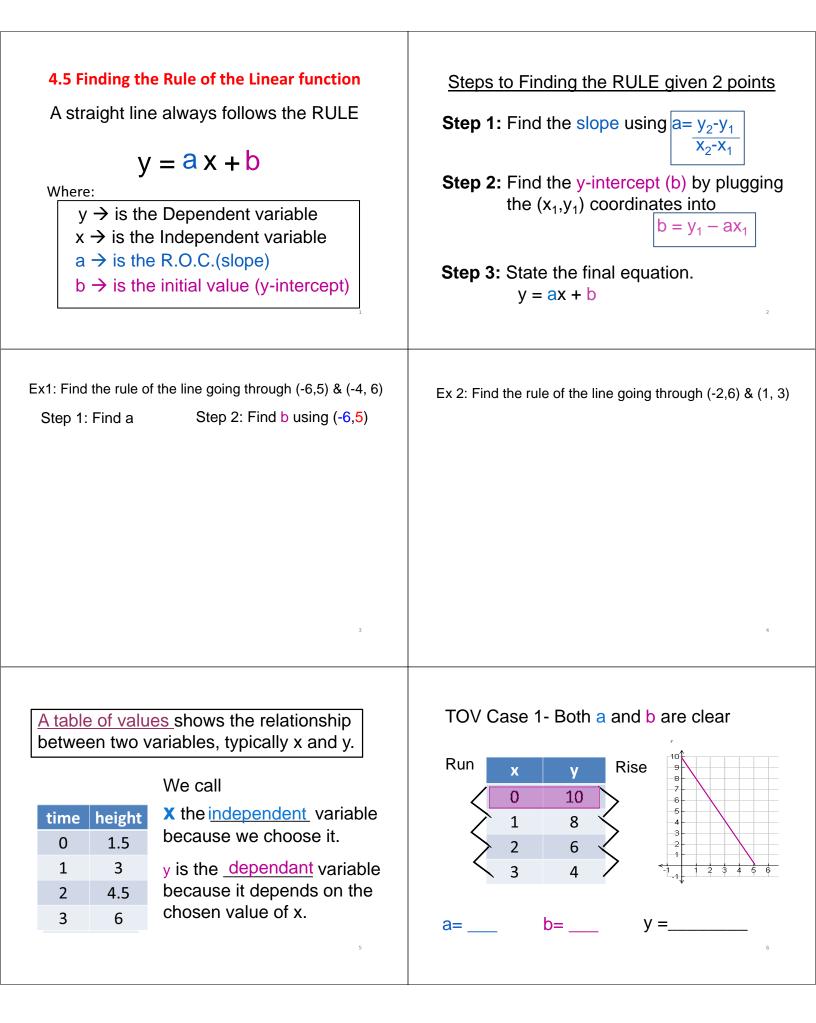
Ex 2: Jen earns \$220 for 20 hours of work. For 10 hours of work she earns \$120. What is her hourly rate?

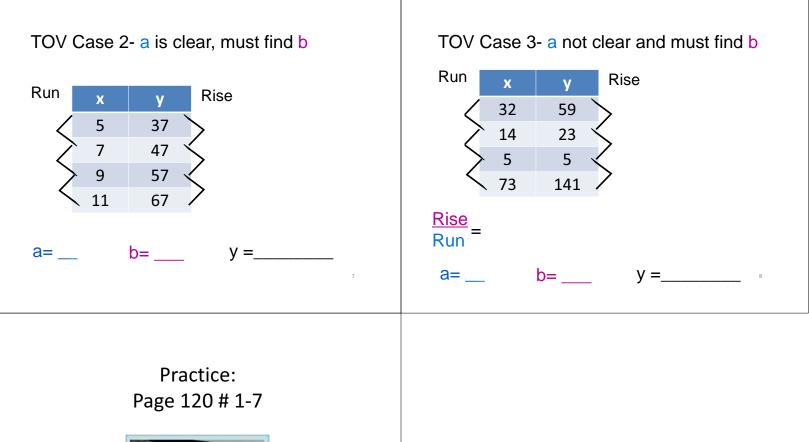

Find the value of c


Ex 3: The slope is 2 G(0,-5) and B(c,3)


Ex 4: The slope is 1/2 S(-1,2) and T(c,6)

Practice: page 106 # 4-7





Practice: Day 2: Page 113 # 5-7 Day 3: Page 116 # 8-12

14

4.6 Systems of 1st Degree Equations

- Finding the solution to a system of equations means find a common point (x,y), that fits into <u>both equations</u> at the same time.
- We can find the solution by making a <u>table of</u> <u>values</u> and finding when the values for y are the same.
- We can check the solution of a system by replacing it back into the original equations to see if it works.
- We can also graph the two lines on the same grid and see where the lines cross.

Ex 2: Solve the system using a table of values

y = 2x + 5y = x + 8

Choose values for x and calculate values for y. The solution exists when both values of y are the same.

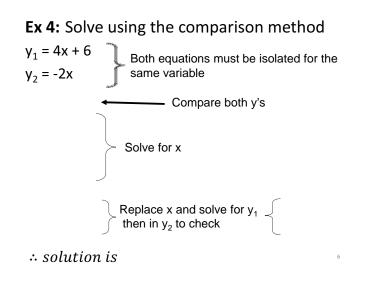
3

х	$y_1 = 2x + 5$	$y_2 = x + 8$
0		
1		
2		
3		

4.6 Systems of 1st Degree Equations

- Finding the solution to a system of equations means find a common point (x,y), that fits into <u>both equations</u> at the same time.
- We can find the solution by making a <u>table of</u> <u>values</u> and finding when the values for y are the same.
- We can check the solution of a system by replacing it back into the original equations to see if it works.
- We can also graph the two lines on the same grid and see where the lines cross.

Ex 1: Is x = 2 and y = 4 a solution to the following systems?


1.
$$y = 2x$$

 $y = x + 3$

2.
$$y = 6 - x$$

 $y = x + 2$

Ex 3: Solve the system in ex 2, by graphing

y = 2x + 5y = x + 8

х	$y_1 = 2x + 5$	$y_2 = x + 8$
0	5	8
1	7	9
2	9	10
3	11	11

Ex 5:Solve using the comparison method

7

y = 3x - 2y = 5x + 6

Practice: page 124 # 1,2 page 125 # 3-7

 \therefore solution is (

4.7 Parameters a and b in y = ax + b

• For every line y = ax + b(the parameters are a and b, and they each affect the look of the line)

• We can observe the affects of changing the parameters by using technology:

TI-83 or GeoGebra or graphsketch.com

А	y ₁ = x	y ₂ = 2x	y ₃ = 0.5x
type of function			
R.O.C. (a)			
Initial value (b)			
Description of line			
В	y ₄ = -x	Y ₅ = -2x	y ₆ = -0.5x
type of function			
R.O.C. (a)			
Initial value (b)			
Description of line	, 		

С	y ₁ = x	y ₇ = x + 2	$y_8 = x - 4$
type of function	Direct		
R.O.C. (a)	1		
Initial value (b)	0		
Description of line	Centered in 1 st and 3 rd quadrants. Increasing line.		
D	$y_9 = 3x + 2$	$y_{10} = 0.5x - 4$	y ₁₁ = -2x + 6
type of function			
R.O.C. (a)			
Initial value (b)			
Description of line			
	•	•	-

Conclusions:

- For every line y = ax + b (the parameters are a and b affect the look of the line)
- a : affects the angle of inclination (steepness of line)
- b : affects the vertical translation of the line

4.7 Parameters a and b in y = ax + b

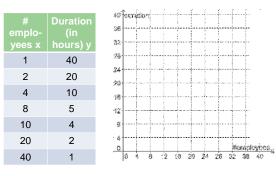
Observations on changing the parameters using: <u>TI-83</u> or <u>GeoGebra</u> or <u>graphsketch.com</u>

А	$y_1 = x$	$y_2 = 2x$	y ₃ = 0.5x
type of function	Direct	Direct	Direct
R.O.C. (a)	1	2	0.5
Initial value (b)	0	0	0
Description of line	Centered in 1 st and	Steeper than $y_{1.}$	Less steep than y _{1.}
	3 rd quadrants.	Increases faster.	Increases slower.
	Increasing line.	Bigger angle of	Smaller angle of
		inclination.	inclination.
В	y ₄ = -x	$Y_5 = -2x$	$y_6 = -0.5x$
type of function	Direct	Direct	Direct
R.O.C. (a)	- 1	- 2	- 0.5
Initial value (b)	0	0	0
Description of line	Centered in 2 nd and	Steeper than y _{1.}	Less steep than y ₁ .
	4 th quadrants.	decreases faster	decreases slower.
	Reflection of y = x.	Bigger angle of	Smaller angle of
	Decreasing line.	inclination.	inclination.
C			
C	$y_1 = x$	$y_7 = x + 2$	$y_8 = x - 4$
C type of function	$y_1 = x$ Direct	$y_7 = x + 2$ Partial	$y_8 = x - 4$ Partial
		•	• -
type of function	Direct	Partial	Partial
type of function R.O.C. (a)	Direct 1 0 Centered in 1 st and	Partial 1 2 Parallel to y ₁	Partial 1 - 4 Parallel to y ₁
type of function R.O.C. (a) Initial value (b) Description of	Direct 1 0 Centered in 1 st and 3 rd quadrants.	Partial 1 2 Parallel to y ₁ Translated (shifted)	Partial 1 - 4 Parallel to y ₁ Translated (shifted)
type of function R.O.C. (a) Initial value (b)	Direct 1 0 Centered in 1 st and 3 rd quadrants. Increasing line.	Partial 1 2 Parallel to y ₁ Translated (shifted) up 2 units	Partial 1 - 4 Parallel to y ₁ Translated (shifted) down 4 units
type of function R.O.C. (a) Initial value (b) Description of	Direct 1 0 Centered in 1 st and 3 rd quadrants.	Partial 1 2 Parallel to y ₁ Translated (shifted)	Partial 1 - 4 Parallel to y ₁ Translated (shifted)
type of function R.O.C. (a) Initial value (b) Description of	Direct 1 0 Centered in 1 st and 3 rd quadrants. Increasing line.	Partial 1 2 Parallel to y ₁ Translated (shifted) up 2 units	Partial 1 - 4 Parallel to y ₁ Translated (shifted) down 4 units
type of function R.O.C. (a) Initial value (b) Description of line D	Direct Direct 1 0 Centered in 1 st and 3 rd quadrants. Increasing line. $\gamma_9 = 3x + 2$	Partial 1 2 Parallel to y ₁ Translated (shifted) up 2 units $y_{10} = 0.5x - 4$	Partial 1 - 4 Parallel to y_1 Translated (shifted) down 4 units $y_{11} = -2x + 6$
type of function R.O.C. (a) Initial value (b) Description of line D type of function	Direct Direct 1 0 Centered in 1 st and 3 rd quadrants. Increasing line. $\gamma_9 = 3x + 2$ Partial	Partial 1 2 Parallel to y ₁ Translated (shifted) up 2 units $y_{10} = 0.5x - 4$ Partial	Partial 1 - 4 Parallel to y_1 Translated (shifted) down 4 units $y_{11} = -2x + 6$ Partial
type of function R.O.C. (a) Initial value (b) Description of line D type of function R.O.C. (a)	Direct Direct 1 0 Centered in 1 st and 3 rd quadrants. Increasing line. $y_9 = 3x + 2$ Partial 3	Partial 1 2 Parallel to y_1 Translated (shifted) up 2 units $y_{10} = 0.5x - 4$ Partial 0.5 - 4 Half as steeper as y_1	Partial 1 - 4 Parallel to y_1 Translated (shifted) down 4 units $y_{11} = -2x + 6$ Partial - 2 6 2 times steeper than
type of function R.O.C. (a) Initial value (b) Description of line D type of function R.O.C. (a) Initial value (b)	Direct Direct 1 0 Centered in 1 st and 3 rd quadrants. Increasing line. $y_9 = 3x + 2$ Partial 3 2	Partial 1 2 Parallel to y ₁ Translated (shifted) up 2 units $y_{10} = 0.5x - 4$ Partial 0.5 - 4	Partial 1 - 4 Parallel to y_1 Translated (shifted) down 4 units $y_{11} = -2x + 6$ Partial - 2 6

Conclusions: For every line y = ax + b (the parameters are a and b affect the look of the line)

a : affects the angle of inclination (steepness of line)

b : affects the vertical translation of the line


4.8 Rational function

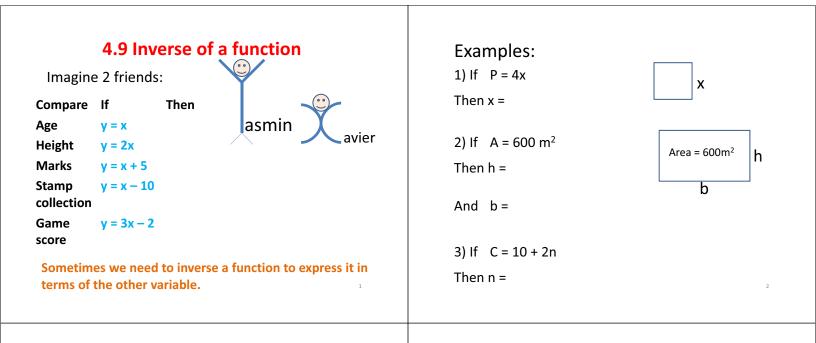
Act. 1 Page 133: Savannah wants to repaint the offices at work. The job requires 40 hours of work for one employee. In this situation, consider the function f which associates the number x of employees hired for the job with the time y that it takes to complete the job.

а		
		Duration
	emplo-	(in
	yees x	hours) y
	1	
	2	
	4	
	8	
	10	
	20	
	40	

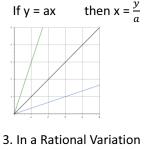
4.8 Rational function

Act. 1 Page 133: Savannah wants to repaint the offices at work. The job requires 40 hours of work for one employee. In this situation, consider the function f which associates the number x of employees hired for the job with the time y that it takes to complete the job.

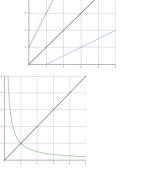
In a Rational Function

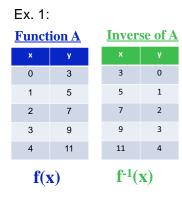

Variables x and y are <u>inversely proportional</u>
That is as x increases y decreases.

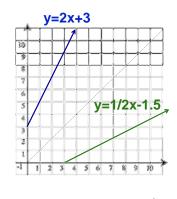
- The rate of change is not constant.
- The product of each pair x and y is constant.
- The rule is: $y = \frac{k}{r}$
- because xy= k
- The graph looks like


Practice: Page 134 # 1-7

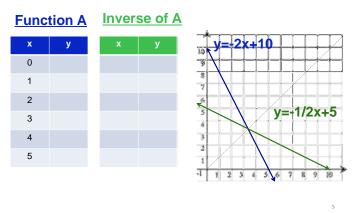
1. In a Direct Variation situation


2. In a Partial Variation situation

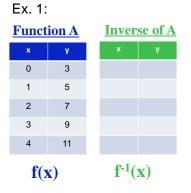

If y = ax + b then x = $\frac{y-b}{a}$

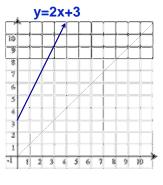

situation

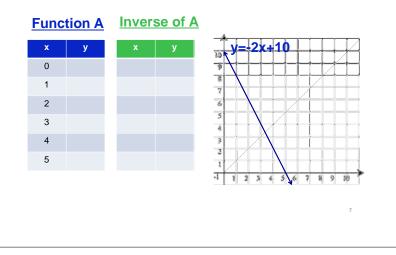
If $y = \frac{c}{r}$ then x = $\frac{c}{v}$



To find the inverse of a function: Swap the x's and y's of each co-ordinate.




To find the inverse of a function: Swap the x's and y's of


Ex 2: Graph y = -2x + 10 and its inverse

each co-ordinate.

Ex 2: Graph y = -2x + 10 and its inverse

Practice: Page 140 # 1, 3, 5

8