4.1 Relations Vs. Functions

Warm up:

Make a table of values, then graph the relation

Function vs Relation

Definition:

A relation is a rule which takes an input and may/or may not produce multiple outputs.

A function is a special relation where every input has at most one output.

Notation:

Relation: $\quad y=2 x+1$

Read it " f of x ": the brackets here DO NOT MEAN MULTIPLY!!

Function: $\quad f(x)=2 x+1$

$$
\begin{aligned}
\text { Ex 1: find } f(7) & =2(7)+1 \\
& =15 \\
\text { find } f(-5) & =2(-5)+1 \\
& =-9
\end{aligned}
$$

Consider 2 machines. Machine A:
$\begin{array}{ll}\text { Buttons } & \text { Drink } \\ \text { Push IN to order } & \text { Comes OUT }\end{array}$

A FUNCTIONING
MACHINE

Vertical line test (VLT)

Machine B:

Buttons Drink
Push IN to order Comes OUT

(1) Mapping Diagram

Each source value has only ONE target value

A source value has MORE THAN ONE target value ${ }^{\text {s }}$
(2) Table of Values

Function YES

\mathbf{x}	\mathbf{y}
0	3
1	4
3	6
5	8

Function \qquad

Each x value has only ONE y value.

An x value has MORE THAN ONE y value
(3) Graph - Vertical Line Test (VLT)

Function YES

A vertical line touches the curve at ONLY 1 spot at a time

Function NO

A vertical line touches MORE THAN 1 spot at a time.

Ex 2: Evaluate the following functions
a) $f(x)=3 x+5 \quad$ find $f(3)$
b) $g(x)=x^{2}+1 \quad$ find $g(6)$
c) $h(x)=(x-2)(x-5) \quad$ find $h(6)$

4.2 -A- Modes of Representation of a function

In a relation between 2 variables x and y, one usually depends on the other (the output depends on the input).
We say: y depends on x

- therefore y is the dependent variable,
- and x is the independent variable.

Do activities 1,2,3 on pages 96,97
P. 96 Act. 1: A ferry ensures the transportation from a town to an island. The rates are the following: \$20 per car and \$10 per occupant in the car. No car is accepted without an occupant and there is a maximum of 6 occupants per car.

P. 97 Act 3: A water reservoir contains 1000 liters of water. A pump is activated to empty the reservoir at a rate of 50 liters per minute. Consider the function which associates the variable "elapsed time" with the variable "quantity of water left in the reservoir".

4.2-B- Modes of Representation of a function

There are different ways of representing a function:

1. Verbal/Written:

- That is a sentence/paragraph to describe the function in words.

Ex: A repairman charges $\$ 30$ per hour plus $\$ 60$ for his travel expenses.

2. Rule/Equation:

- That translates from English to Math, and expresses the dependent variable y in terms of the independent variable x.
Ex:

3. Table of Values:

- A way to organize data. It associates the x values with their y values.

Ex: Hours	0	1	2	3	4	5

Cost
4. Cartesian graph or Mapping Diagram:

- A visual Representation

Ex:

Remarks:

1. The indep. Var. x goes on the Horizontal axis; the dep. Var. y goes on the vertical axis.
2. Choose an appropriate scale for the x and y-axis.
3. We can break the axis if the graph starts up too high.
4. Remember to label the axis, the scales, and put a title.

Practice:
Page 98 \# 1

4.3 -A- Rate of change

- Rate of change (R.O.C) is also known as Rate of variation, Slope, and Rise over Run
- Given points $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ on a line, then the rate of change between points $A \& B$ is :

$$
\begin{aligned}
\text { R.O.C. } & =\frac{\Delta y}{\Delta x} ; \quad \Delta \text { : difference or change in } \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\text { or } & =\frac{\text { rise }}{\text { run }} \quad \text { if you have a graph }
\end{aligned}
$$

Ex 1: Given points $A(0,2)$ and $B(3,4)$

- R.O.C. $=\frac{\Delta y}{\Delta x}$
- Or Count $\frac{\text { rise }}{\text { run }}=$

On any straight line all segments of the line will have the same slope

- 4 possible slopes are noted:

1. Positive slope :

2. Zero slope:

Ex 3: Find the slope of the following:

1) $A(3,3) B(2,5)$
$\frac{\text { rise }}{\text { run }}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{X}_{1}}$
2) $\mathrm{C}(-1,5) \mathrm{D}(4,8)$
$\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=$
$=$
$=$

Ex 2: Find the slope of each line on the grid:

- Slope of line:
- a:
- b:
- c:
- d:

Practice:
page 103 \# 1-3

4.3 -B- Constant Rate of Change

Find the rate of changes:
a) Between A and D:
b) Between D and C:

c) Between C and A:
d) Between A and B:

Property of ROC of a straight line:

- On a straight line the ROC is constant (the same) no matter which 2 points we pick.
- Where as on a curve the ROC changes (is not constant) along the curve.
- On a graph we can count the units:
> ROC $=\frac{r i s e}{r u n}$
- Given 2 points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$:
$>\operatorname{ROC}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Find the rate of Change for the Following

Ex 1: A tank initially contains 56000 L of eggnog. The tank is leaking! After 5 hrs the tank has 45000 L .

Ex 4: The slope is $1 / 2$
$S(-1,2)$ and $T(c, 6)$

Find the rate of Change for the Following

Ex 2: Jen earns $\$ 220$ for 20 hours of work. For 10 hours of work she earns $\$ 120$. What is her hourly rate?

Find the value of c

Ex 3: The slope is 2
$\mathrm{G}(0,-5)$ and $\mathrm{B}(\mathrm{c}, 3)$

4.4-A- Linear Functions

- Linear Functions have degree 1
- The rule: $y=a x+b$
or

$$
f(x)=a x+b
$$

Case 1: if $\mathrm{b}=0 \rightarrow$ Direct Variation Linear function
Case 2: if $b \neq 0 \rightarrow$ Partial Variation Linear function

Case 1: if $b=0$ Direct Variation Linear function

Properties:

1. Every y-value is a direct multiple of the x-value
2. The rule: $\quad y=a x \quad$ or $f(x)=a x$
3. Table of values:

3. Table of values:			ference
0	0		
1	3	3	$\mathrm{ROC}^{\text {c }}$
2	6	3	
3	9	3	

4. Graph: a Diagonal line passing through origin $(0,0)$

Case 2: if $\mathbf{b} \neq \mathbf{0}$ Partial Variation Linear function

 Properties:1. y-values are not direct multiples of the x-values
2. The rule: $\quad y=a x+b$ or $f(x)=a x+b$
3. Table of values:
4. Table of values:

| x | y | $1^{\text {st }}$ Difference | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -3 | Constant | |
| 1 | -1 | 2 | ROC |
| 2 | 1 | 2 | |
| 3 | 3 | 2 | |

4. Graph: a Diagonal line passing through y-axis at point $(0, b)$

Constant Functions

Properties:

1. The $\mathrm{ROC}=0$ (\therefore aka: zero variation function)
2. The rule: $y=b$ or $f(x)=b$
3. Table of values:

x	y	$1^{\text {st }}$ Difference
0	5	
1	5	0
2	5	0

4. Graph: Horizontal line passing through the y-axis at b.

Ex 1: The movie ticket costs $\$ 9$ for all ages.
If x is the age and y is the cost of ticket

- Table of values:
- ROC:
- The rule is :
- The graph:

Determine the degree of each function.
$f(x)=2 x+3$ \qquad $f(x)=5$ \qquad
$f(x)=3 x^{2}-2 x+1 \underline{2}$

$$
f(x)=2 x^{3}+3 x \quad 3
$$

$f(x)=-4 x+1$
$f(x)=\frac{1}{x}$ none
The degree of a function determines the type of function

Degree	Type of function	
0	Constant	Direct Linear function
1	Linear	Partial Linear function
2	Quadratic	

Ex 1: is it Constant, Direct Linear, Partial Linear or Other

Ex 1: is it Constant, Direct Linear, Partial Linear or Other

x	y
1	3
2	5
3	7
4	9

x	y
10	20
9	18
8	16
7	14

x	y
0	5
20	25
40	45

Ex 1: is it Constant, Direct Linear, Partial Linear or Other
$y=4 x+1$
$y=x^{2}$
$\mathrm{y}=\sqrt{x}$
$\mathrm{f}(\mathrm{x})=3 \mathrm{x}$
$f(x)=5$

Day 1: Page 112 \# 1-4

Tips for graphing a linear function:

1) Make a Table of Values (min 3 points)
2) Choose easy x-values like $\underline{0,1 \text { or } 2}$.

If your slope is a fraction, pick multiples of the value for the run (denominator). - ie if slope $=\frac{3}{4} \quad$ pick $x=0,4,8$.

1. Graph and label these equations

$$
\begin{aligned}
y & =3 x \\
y & =3 x
\end{aligned} \quad y=-3 x+2 \quad y=\frac{1}{3} x \quad y=-\frac{1}{3} x-3, \begin{aligned}
& y=\frac{1}{3} x
\end{aligned}
$$

$y=-3 x+2$

$$
y=-\frac{1}{3} x-3
$$

1. Graph and label these equations

$$
\begin{aligned}
& y=3 x \\
& y=-3 x+2 \\
& y=\frac{1}{3} x \\
& y=-\frac{1}{3} x-3 \\
& y=3 x \\
& \begin{array}{c}
a=\frac{3}{1}=\frac{\text { rise }}{\text { run }} \\
b=0 \\
y=-3 x+2 \\
a=-\frac{3}{1}
\end{array} \\
& b=2
\end{aligned}
$$

Practice:

Day 2: Page 113 \# 5-7
Day 3: Page 116 \# 8-12

4.5 Finding the Rule of the Linear function

A straight line always follows the RULE

$$
y=a x+b
$$

Where:
$y \rightarrow$ is the Dependent variable $x \rightarrow$ is the Independent variable a \rightarrow is the R.O.C.(slope) $\mathrm{b} \rightarrow$ is the initial value (y-intercept)

Steps to Finding the RULE given 2 points
Step 1: Find the slope using $a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Step 2: Find the y-intercept (b) by plugging the $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ coordinates into

$$
\mathrm{b}=\mathrm{y}_{1}-\mathrm{ax}
$$

Step 3: State the final equation.

$$
y=a x+b
$$

Ex 2: Find the rule of the line going through $(-2,6) \&(1,3)$

$$
\text { Step 1: Find a } \quad \text { Step 2: Find b using }(-6,5)
$$

A table of values shows the relationship between two variables, typically x and y.

We call

time height

0
1.5

13
24.5

36
X the independent variable because we choose it.
y is the dependant variable because it depends on the chosen value of x.

TOV Case 1- Both a and b are clear

TOV Case $2-a$ is clear, must find b
$a=$ \qquad
$b=$ \qquad
$y=$ \qquad

TOV Case 3- a not clear and must find b

$\underline{\text { Rise }}=$
Run $=$

$$
a=
$$

$$
b=
$$

\qquad

$$
y=
$$

\qquad

4.6 Systems of $1^{\text {st }}$ Degree Equations

- Finding the solution to a system of equations means find a common point (x, y), that fits into both equations at the same time.
- We can find the solution by making a table of values and finding when the values for y are the same.
- We can check the solution of a system by replacing it back into the original equations to see if it works.
- We can also graph the two lines on the same grid and see where the lines cross.

Ex 2: Solve the system using a table of values

Choose values for x and

$$
\begin{array}{ll}
y=2 x+5 & \begin{array}{l}
\text { calculate values for } y . \text { The } \\
\text { solution exists when both values } \\
y=x+8
\end{array} \\
\text { of } y \text { are the same. }
\end{array}
$$

x	$y_{1}=2 x+5$	$y_{2}=x+8$
0		
1		
2		
3		

4.6 Systems of $1^{\text {st }}$ Degree Equations

- Finding the solution to a system of equations means find a common point (x, y), that fits into both equations at the same time.
- We can find the solution by making a table of values and finding when the values for y are the same.
- We can check the solution of a system by replacing it back into the original equations to see if it works.
- We can also graph the two lines on the same grid and see where the lines cross.

Ex 1: Is $x=2$ and $y=4$ a solution to the following systems?

1. $y=2 x$
$y=x+3$
2. $y=6-x$
$y=x+2$

Ex 3: Solve the system in ex 2, by graphing

$$
\begin{aligned}
& y=2 x+5 \\
& y=x+8
\end{aligned}
$$

x	$y_{1}=2 x+5$	$y_{2}=x+8$
0	5	8
1	7	9
2	9	10
3	11	11

Ex 4: Solve using the comparison method
$y_{1}=4 x+6$ $y_{2}=-2 x$

Both equations must be isolated for the same variable

Replace x and solve for y_{1} then in y_{2} to check
\therefore solution is

Ex 5:Solve using the comparison method
$y=3 x-2$
$y=5 x+6$
\therefore solution is ।

Practice:
page 124 \# 1,2
page 125 \# 3-7

4.7 Parameters a and b in $y=a x+b$

- For every line

$$
y=a x+b
$$

(the parameters are a and b, and they each affect the look of the line)

- We can observe the affects of changing the parameters by using technology:

TI-83 or GeoGebra or graphsketch.com

C	$\mathrm{y}_{1}=\mathrm{x}$	$\mathrm{y}_{7}=\mathrm{x}+2$	$\mathrm{y}_{8}=\mathrm{x}-4$
type of function	Direct		
R.O.C. (a)	$\mathbf{1}$		
Initial value (b)	$\mathbf{0}$		
Description of line	Centered in $\mathbf{1}^{\text {st }}$ and $\mathbf{3}^{\text {rd }}$ quadrants. Increasing line.		
D	$\mathrm{y}_{9}=3 \mathrm{x}+2$	$\mathrm{y}_{10}=0.5 \mathrm{x}-4$	$\mathrm{y}_{11}=-2 \mathrm{x}+6$
type of function			
R.O.C. (a)			
Initial value (b)			
Description of line			

A	$\mathrm{y}_{1}=\mathrm{x}$	$\mathrm{y}_{2}=2 \mathrm{x}$	$\mathrm{y}_{3}=0.5 \mathrm{x}$
type of function			
R.O.C. (a)			
Initial value (b)			
Description of line			
B	$\mathrm{y}_{4}=-\mathrm{x}$	$\mathrm{Y}_{5}=-2 \mathrm{x}$	$\mathrm{y}_{6}=-0.5 \mathrm{x}$
type of function			
R.O.C. (a)			
Initial value (b)			
Description of line			

Conclusions:

- For every line $y=a x+b$ (the parameters are a and b affect the look of the line)
- a : affects the angle of inclination (steepness of line)
- b : affects the vertical translation of the line

4.7 Parameters a and b in $y=a x+b$

Observations on changing the parameters using: Tl-83 or GeoGebra or graphsketch.com

A	$y_{1}=x$	$y_{2}=2 x$	$y_{3}=0.5 x$
type of function	Direct	Direct	Direct
R.O.C. (a)	1	2	0.5
Initial value (b)	0	0	0
Description of line	Centered in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants. Increasing line.	Steeper than y_{1}. Increases faster. Bigger angle of inclination.	Less steep than y_{1}. Increases slower. Smaller angle of inclination.
B	$y_{4}=-x$	$Y_{5}=-2 x$	$y_{6}=-0.5 x$
type of function	Direct	Direct	Direct
R.O.C. (a)	-1	-2	-0.5
Initial value (b)	0	0	0
Description of line	Centered in $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants. Reflection of $y=x$. Decreasing line.	Steeper than y_{1}. decreases faster Bigger angle of inclination.	Less steep than y_{1}. decreases slower. Smaller angle of inclination.
C	$y_{1}=x$	$y_{7}=x+2$	$y_{8}=x-4$
type of function	Direct	Partial	Partial
R.O.C. (a)	1	1	1
Initial value (b)	0	2	-4
Description of line	Centered in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants. Increasing line.	Parallel to y_{1} Translated (shifted) up 2 units	Parallel to y_{1} Translated (shifted) down 4 units
D	$y_{9}=3 x+2$	$y_{10}=0.5 x-4$	$y_{11}=-2 x+6$
type of function	Partial	Partial	Partial
R.O.C. (a)	3	0.5	-2
Initial value (b)	2	-4	6
Description of line	3 times steeper than y_{1} Shifted up 2 units	Half as steeper as y_{1} Shifted down 4 units	2 times steeper than y_{1} and reflected Shifted up 6 units

Conclusions: For every line $y=a x+b$ (the parameters are a and b affect the look of the line)
a : affects the angle of inclination (steepness of line)
b: affects the vertical translation of the line

4.8 Rational function

Act. 1 Page 133: Savannah wants to repaint the offices at work. The job requires 40 hours of work for one employee. In this situation, consider the function f which associates the number x of employees hired for the job with the time y that it takes to complete the job.

$\left.$| a | \# |
| :---: | :---: |
| emplo- | |
| yees x | | | Duration |
| :---: |
| (in |
| hours) y | \right\rvert\, | 1 |
| :---: |
| 2 |

4.8 Rational function

Act. 1 Page 133: Savannah wants to repaint the offices at work. The job requires 40 hours of work for one employee. In this situation, consider the function f which associates the number x of employees hired for the job with the time y that it takes to complete the job.

$\#$ emplo- yees x	Duration (in hours) y
1	40
2	20
4	10
8	5
10	4
20	2
40	1

In a Rational Function

- Variables x and y are inversely proportional

That is as x increases y decreases.

- The rate of change is not constant.
- The product of each pair x and y is constant.
- The rule is: $y=\frac{k}{x} \quad$ because $\quad x y=\mathrm{k}$
- The graph looks like

Practice:
Page 134 \# 1-7

4.9 Inverse of a function

Imagine 2 friends:
Compare If
Age $y=x$
Height
$y=2 x$
Marks $\quad y=x+5$
Stamp $y=x-10$
collection
Game $\quad y=3 x-2$
score
Sometimes we need to inverse a function to express it in terms of the other variable.

Examples:

1) If $\quad P=4 x$

Then $\mathrm{x}=$

2) If $A=600 \mathrm{~m}^{2}$

Then $\mathrm{h}=$

$$
\text { Area }=600 \mathrm{~m}^{2}
$$

b
And $b=$
3) If $C=10+2 n$

Then $\mathrm{n}=$

1. In a Direct Variation situation
If $\mathrm{y}=\mathrm{ax} \quad$ then $\mathrm{x}=\frac{\mathrm{y}}{a}$

2. In a Rational Variation situation

If $\mathrm{y}=\frac{c}{x} \quad$ then $\mathrm{x}=\frac{c}{y}$
2. In a Partial Variation situation

If $\mathrm{y}=\mathrm{ax}+\mathrm{b}$ then $\mathrm{x}=\frac{y-b}{a}$

To find the inverse of a function: Swap the x's and y's of each co-ordinate.

Ex. 1:
Function A

$\mathrm{f}(\mathrm{x})$

$\mathbf{f}^{-1}(\mathbf{x})$

Ex 2: Graph $y=-2 x+10$ and its inverse

Function A

Inverse of A

\mathbf{x}	\mathbf{y}	x	y
0			
1			
2			
3			
4			
5			

To find the inverse of a function: Swap the x's and y's of each co-ordinate.

Ex. 1:
Function A

\mathbf{x}	\mathbf{y}
0	3
1	5
2	7
3	9
4	11

$\mathbf{f}(\mathbf{x})$

Ex 2: Graph $y=-2 x+10$ and its inverse

Function A Inverse of A

\mathbf{x}	\mathbf{y}	x	y
0			
1			
2			
3			
4			
5			

Practice:

Page 140 \# 1, 3, 5

